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The most general plastic  stress-strain relation for 

materials obeying Drucker's work-hardening criteria is special- 

ised to commonly used forms.    Particular   attention is paid  to 

the  implications  incurred by (a)  the  assumption of a  loading 

function for these materials,  and by (b)   the assumption of the 

linearity of plastic strain increments  in the stress increments. 



4 detailed  t^ataseftt of the experi^e:nt;al,4atB-:ofe±slrted_ 

rlii the testing of two.• elufcinuafi alloy thin~i*alled   tubes, is pre* 

sented.    Comparison is made o*'  this analysis ^Ith the Implications 

:of v;tw#vfc*sic '.assumptions of incremental; theories-of, plasticity 

tor '^orK-nardenling :«gaterials*    The. Qigfe&j^^ 

Stss&i* relation for one of the • tubes wa^Jl.near. ;i^ the • i^iN?^ii£s 

©frjitress ^and.plestic~'s"tiT9lS''*hiie that:-f^.l^>^th^-;?*i|:?^**; 

Siidedly non-"»£tt*sr. 
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Quite recently the  mathematical theory of stress-strain 

lews of plasticity has attained a form of very broad  generality. 

The  theory embraces most previous theories as special cases. 

It is the purpose  here   to present this theory in its broadest 

aspect ene   to specialize  it to the  principal particular forms. 

The  theory is concerned nith elastic-plastic materials 

that ore   independent of time  and  temperature effects.    The ma- 

terial is assumed  to be  ^ork-hardening in the  sense described 

by Drucker  (1).    Most metals us-d  in engineering practice at 

normal temperatures and rates of loading exhibit—at least to 

within the "eccurecy of  normPl experimentation—this  independence 

of tiev  ?nd tempersture.    The statement of work-hardening re- 

ferred  to is a definition of  a class of materials,  and provides 

a mathematical description sufficiently general to include  the 

phenom non of work-hardening  of metais es usually interpreted 

on- the on«   hsnd and   to give  a logical extension to a completely 

gmerrl stressing of a body on the other. 

Wcrk-Kordenlng 

i£Mfliu»lly *hou~ht cf,  work-hardening M ans  that given 

a tsatcrial IB ^.prescribed st^'c  cf stress and strain,  the rste 

of  in?r^ss^--af.,'>cth totel stsd plastic work per  unit  velum* per 
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given change  in any iefc^onent of  strain must be positive as the 

strain increments are  increased in ratio (2).    The concept has 

been generalized by Drucker  ( \ ' '.;J-^:tb*i foilvvir.g manner: 
A Consider a material unu-.-r a system of stressesd 

due to an agency a» Consider a svstem of stresses A«J  "that are 
u 

slowly applied and  then removed  from the body by an external 

agency B.    "Slovdy" is to be  Interpreted tc imply that inertia, 

vibratlonal,  anc"  viscosity effects are not incurred.    Work- 

hardening then requires that 

(a)    for all such added sets of stresses the material 

will remain in equilibrium,  and that 

\fc)   ^poiittWn<bik be done by the external sgencv B 

during the  application of theAo 
U 

(c)     the w,or|f done by the external agency B over  the 

entire  cycle be positive  if plastic cef or pa tiers 

have occurred,    Ir.-is viork trill be  zero if and or-lv 

if  tr.f  sv.rcjj.ns  are  purely elastic. 

^LJiefinition^f Vfork-hardeninc leads to the raathe- 

r»*$|e*;3r#jipre ssion* 

B 
&c* *  &e -\t *'"0     tathg the applications of the ij       IJ 

B 
Ac I 

ij U 

5o B &e P 

13 "ij 

stresses; [1] 

f<S> the-I'entlre 'cycle,' and [2T 

      . p 
=r 0 If" acd-•-oniv if &t      - C, 

provided,  cf  q#ils«'j  Ae      cftn'be asperated from Ac        and At 
•    ij ij ij 

total 
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tt*   + Aee . These expressions require stability in the strictest 

sense; no c-nc-rgy — ever, of infinitesimal order — may be obtained 

from the material by the agency B. If any plastic deformation 

is to take place, energy must be applied tc the material by 

agency B. Furthermore the material will be in equilibrium for 

ell systems Ad  + <J n that can be attained from d  . 

Fig. 1 illustrates these ideas by en example quite 

analagous to that used by Drucker. P represents a body assumed 

to be in the incipiently plastic state under loads kept constant 

during the following. The bcrbell at the right is pivoted at 

C so as to be free to turn about B'n axis perpendicular to the 

plane of tie figure^ A springof zeromass is fastened to the 

top mass to symbolize the absence of impact of the upper -eight 

against the block A when the barbell is released. The upper 

we«ight of the barbell is assumed verv slightly larger than the 

lo^er "o that in the position shoT?n the berbeil is in unstable 

equilibrium; pivot C and the spring are considered frlctionless. 

If the barbell is no* given an infinitesimal counterclockwise 

displacement, it will continue to turn slowly until the spring 

comes in contact vithP.  Inertia 'sill compress the spring which 

•ill bring the svstej to rest and then cause the barbell to turn 

clockwise. However, the *crk-hardening definition above insures 

thet th* barbell will neve- go through its unstable equilibrium 

position, sr.C  thai it Fill T turn to thrt position only if no 

plastic deforestion occurred. 
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It is emphasised that the criteria (b) and (c) make 

no explicit assumptions *ith regard to stress-strain relations. 

'Jhey also do not hypothesize that a certain s~t of stress in- 

crements do or do sot casse plastic deformation or loadings 

They ^ftly state that if any additional set of stresses are 

-s^^y^:|riiS^M::the'-j|?xisiting. stress state and slowly removed, 

?^th^^fe^^tinE strains must satisfy the conditions enunciated. 

(ill ^B?r?^^ygs?»3traifi {.aw 

Ane most general stress-strain law that can be written 

th*.nf  under the coreition that the material be independent of 

ti esnd temperature effects, would be a functional relation 

bfct^een the cjoaponents of tf    ,••*     (both the elastic e       asd 

the-yl&iartic ep   ) end the-entire history of stress and strair.. 

She^&£0? restrictions that would be imposed on the relation 

•^ouia  be   thess   implied     SjiNtbJ JBpS (c). 

i^TpictoTiaJ Tepresentsfion that is frequently used 

may mak« the Idaa of the restriction clearer.    Consider the 

Bin« cottponeets <ti *A. *s theec^wieirtsrof a cartesian vector. 
ii»_. 

<^add«r:-tfc<6~ components of «,, as components of a cartesian 
«3 

vector referred to the  fame axes as the vector o,>.    Then «.., 
- total      c        p fa.- iJ 
elj      »    Hi*   efi or their increments or time retes of any of 

those say b- considered v&ctors in "this space,    the only restric. 

tlon on this general stress-strain lew would be  that for any 

stress-strain state of th#material, do*, and A«_JS mast iske sn 

acute sr.gle With each other, and that Sn any load.   - cyl.   Ao,. 
A. v 
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n 
and fis^ nust  slso rake  on scute  angle  7.1th each other  for non- 

zero Ac.^j   . 

Such 6 law, however,, roulc"  to  totally unusable  from an 

eririneefing point of vie*-.    Since ea.h material differs froa 

each oth-r siaterial,  the only determination of the stress-strain 

law of a particular material would he an experimental one. 

Loading junctions 

7*.;o additional almost universally adopted assumptions 

are employed  In an attempt to make  the problem mb^c  tractable, 

The first  is that added es s proviso to the mathematical state- 

ment or  work-hardening conditions  (b)  and   (c):  the plastic  and 

elastic  strains anc   associated stresses arc  distinguishable  and 

independent,.  8nd their effects are linearly 8dditive.    The second 

is the hypothesis of the existence of a loading function.    For 

each state of strain anJ historv there exists a function fCtfjj) 

and a number k such that plastic strains will ensue only upon 

rcachlr.'   a state of stress   dj, for which f(<Tjj)>   k.    Here f 

is usually considered es a function of the stresses only in 

which the st^tis of  strain and history appear as parameters. 

The nussb* r k may also be dependent on the  plastic strain and 

th*-  plastic strain history. 

f(°4<) say conveniently be   thought of 33 a means of S 

classifying joints  in stress space  into three classes,  p, E, | 

and  B.     P  is the  srt  of  all <5j-  for *hich *(<*!<)   >    k.    B Is I 

the  set of «41 «hich arc boundary points for P and  the  cor.plo- 

K<r.t of P — i.e.  points for  *h!ch fC*^)   <   k.    Finally £ is 

-» 

--,..,i ' •"-"•""i nji.rwiup.it. 
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the set of points which i" the complement of the set P+3. The 

points of E are said to be "inside" the boundary B while the 

set P is "outside". 

k  complete discussion of the i-plications of the hypo- 

thesis of s loading function is lacking at the present time. 

However, certain broad categories of functions have been used 

and quite general results have been obtained from them. The 

most inclusive yet presented ir that of continuous functions of 

d i<- 

For  these functions  the  boundary set B is also contin- 

uous and forms  a surface  in d.i  space  — * commonly called  the 

yield  or  loading  surface.    lor  all loading functions  the  set E 

is composed entirely of elastic  states possible for  the given 

state  of stress and  strain history.    The  assumption of continuity 

assures that the boundary points also belong to the set with 

which only elastic strains are associated.    lor  this case 

loading is incurred for outward pointing stress increment 

(rate) vectors starting from any stress state representsble 

by a point on the loading surface; unloading, for any inward 

pointing increment (rate)  vector;  snd neutral loading for any 

increment  vuctor  tangent to the  lo?din£ surface  (3). 

Drucker  proved  (4 )  that for continuous  loading func- 

tions  the  vork-hardening criteria  implied that  the set E + B is 

convex.    Since  the loading function is  still a function of piastife 

strain end plastic strain history,  the surface is,of course,still 

free to expand,  translate,  change  shape,  or perform any combina- 

tion of the&e  in stress  space as loading proceeds.    It is in- 

teresting  to rote that In the  move-sent of  the  surface,  the stress 



AI1-88 9 

free point, d^itC, rnay at some st"j£e becr^ae SJQ outside point. 

Since the bounder;/ is continuous, it must consist only 

o?  smooth points (i.e. points at which there is a continuously 

turning tangent plane to the loading surface) and of points (each 

of which will be referred to hereafter as a "pointed vertex") 

which 3re on either corners or points of the loading surfece. 

Convexity of the loading surface implies that the strain incre- 

ment vector must be parallel to the outward normal at each 

smooth point of the loading surface, and that at each pointed 

vertex the strain increment vector must net make an obtuse 

angle with the stress increment vector that caused it. 

•In the proof of convexity the following reasonable though 
lengthy-to-state theorem was tacitly assumed: 

Given* 1) a, any point of E 
2) b, any point of 5 that can be reached bv a 

path,Y , from a to b such that y lies entirely 
in E (except, of course, for b) 

3) dy (= c - b) any infinitesimal incremental stress 
vector that constitutes loading from b to c 

4) Let f(c) determine a n^v, boundaw E* with inside 
E*. 

Conclusion: There exists a path y' contained in 8* + £' 
Joining c and a. 

Physically speakinc , this theorem merely states that if from a 
stress state o±*  an external agency applies a s^t of stresses 
thst. involve only elastic strains and an infinitesimal plastic 
strain, then there exists a *av to return to stress state Oi^ 
bv means o' stresses thst Involve only elastic changes of s^ain, 

If this theorem is accepted, it is not 3trictly neces- 
sary to assume tht continuity of the boundary since th* proof of 
convexity given by Drucker now carries through, and since the 
bound flrv of a c en vex s^t is continuous. 



Almost ?11 loading functions of the isotropic and of 

the anisotropic type that have been proposed to date are Included 

in the type for which Drucker proved convexity. Further assump- 

tions concerning the particular materials for which the loading 

function is to be used influence the particular form of the 

loading function* Four broad categories have been used exten- 

sive lyj 

First note that convexit"/ was established for those 

materials for which ti « rate (i.e. viscosity) effects are absent. 

This assumption implies that if tine rate tei ,-?.s appear in the 

stress-strain relation, the function displaying them must be 

homogeneous and of zero order in them. 

Isotropic materials in the extended sense are those in 

which there are no directional properties in stress free material. 

For such materials stresses appear in the loading function only 

in forms expressible as functions of the mean no-mal pressure J^ 

and of the invariants J- and J-. of thy stress deviation »**t d _> * J 

JJI = 1/3 <*!!» J2 = i/r2 sij s1i» and ^3 = -^3 sij sik ski whore 

sii ~ c 1.1 " *^ ^kk^iV Similarly the piostic strain should 

appear only in forms expressible as functions of  the  invariants 

Jl»  *2»  ard  *3 of   z 1J   :  Tl =   eii»  *2 = 1/2   e ij    e fi  '   and *3 = 

P        p        p 
Ml   eij    z Jk    Fki*    Finally the  strain rates may appear  in f 

• P or.ly as functions K,,  K-f  ar.d K-*  ox   the  plastic  strain rate Zi *   i 

If  ttee plastic deformation of a material Is assumed to 

be incoapressibie,  then by definition I,  « 0«    It follows also 

that Ki = 0.    The loading function oust be  independent  of the 
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mean normal pressure, all plastic stress-strain relations m3y be 

expressed as relations between plastic strain increments and 

stress deviations. 

If an initially isotrcpic material is to display cub- 

sequent anisotropy in the unloaded condition, pla -tic strains 

must b* included in the loading function ( 5,6 ), 

Finally there is s large number of loading functions 

that ere functions of stress alone, i.e. independent of the 

plastic strain. This is possibly the most popular group of ell. 

Two points are emphasized with regard to the above 

categories. The first is that it is not intentionally implied 

that these categories arc exhaustive nor that they are mutually 

exclusive, but rather that most existing loading functions can 

be classified in one or more of them. The second is that the 

inferences GO not apply necessarily to the value k which indicates 

the value the loading function must attain before plastic defor- 

mations occur. 

p.l??Us §tp?a-Strg;n R?l8t*pn? 
The existence of smooth "convex" loading functions 

effects a rreet simplification in the form of the stress-strain 

law. Since at rmooth points a unique outwerd normal exists and 

since the plastic strain Increment must bo parallel to It, It 

follows that the law must be 

dcf. * X. -2£-      for f> k and f > 0 [ 3-,' 

end     de^j o 0 otherwise. [)b] 

• 

'^zsaa&z-. 
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Here   X is  a scalar multiplier  thst mav depend on the  3tress, 

plastic stTein and plastic stress-strain history.    Gince   [3a] 

holds  only for f  > 0 erd since        •    exists,   [3] may be written 
fioij 

iJ ^lj   %q       M ««pq M 

deT, * 0 fcr  -2~    do      * 0 
15 *>pq        Pq 

where G.   is a scalar  function of stress,  etc.    This is  the most 

general form of  the plastic stress-strain law compatible with 

Drucker's definition of work-hardening and  the assumption of the 

existence of a continuous loading function (see footnote on page 

9). 

It should be noted that » —. do  is not a complete 
0opq      P* 

differential of f excopt for  those f's which are  functions only 

of stress.    Lven in this eventuality the right hand side of   [4] 

does not represent a complete differential except for certain 

paths of  loading.    For these paths of loadirg,  the  flow theories 

arxf  deformation theories coincide.    Many interesting cases of 

t!.ls coincidence hit    t2er. studied  in (5), 

Thr  particular foim  [4} is misleading In that superfi- 

cially it appears that  the  plastic  stroin  increments are  linear 

functions of the  stress increments.    ks pointed out. previously, 

it is permissible for  the  increments to appear  in the plastic 

stress-strain rel^Mon (i.e.  in the coefficients of  CJOJJ for 

th«        form discussed        here)    provided        they      appear 

only in howofcneous functions cf      zero order. 

The      assumption        of linearity requires        that      the 
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Of coefficients G and   g—     be independent of stress or  of strain 

inrrccients entirely. 

The  introduction of  the  linearitv of the  incrementd 

piastic  strain and  stress increments  into incremental plastic 

stress-strain laws must be- regarded  as an assumption insofar  as 

proofs existing  to date  are concerned.    This  fact *S3 cither 
i 

overlooked entirely or  glossed over  in a  greet deal of the develop- 

ment of plastic stress-strain relations  ( 7 )«,    Furthermore,   ihe 

assumption of linearity is entirely independent of the  assumption 

of the existence of a loading function.    It merely states  that 

in the  most general form the   stress-strain relations may b»> 

rTitten    de^j » *iikl dokl    wn€ro  tne *likl  are  independent of 

the  increments do., c/ de. . and that the  effect of two different 

differential loadings      dOj*      and    dOj\  '  is  the same as the 
i 

combined effect of both loadings;I.e. 

dt*    (d£W2)> = de '  (doUW W2)> [5] j U      pq      pq U      PQ      IJ      pq 

It  is  interesting to contrast the  general implications 

of the assumptions of the  exister.ee of  a loodinfc function and of 

the vslidity of  linearity.    The existence  of  o loading function 

puts restrictions on t.ho possible directions for plastic strain 

increment vectors correspond in*  to a givn stress increment vec- 

tor  at  a point.    The  validity of line crity,  on the other hand, 

puts restrictions on th-  magnitudes of the plastic strain lncre- 

aent vtciors resultlnf from loading at a point. 
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Th' rost general form of the stress-strain law that 

embraces both th. oxistc-nce of a smooth loading function and 

the V3licitv of linearity is the 3eme as [4] except that neither 

f nor C may be dependent on the increments of either tre plastic 

strain or th. stress. 

If, however, a loading function has a pointed vertex, 

linearity at that point is impossible. This fact can be illus- 

trated most simply in the case of plane stress referred to 

principal axes fixed in space, although the results can be 

generalized readily. For this csse the stress state can be 

represented by a point in a two-dimensional drawing (Fig. 2). 

Hero the loading surface becomes a curve. At e pointed vertex 
j 

in the loading curve, the curve will be represented by the arcs 

ft end Y2 "hlch meet in the pointed vertex P< The convexity 

assures that in some neighborhood of P the arcs y and -f2  sre 

•nooth. It also assures that the "corner" will point outward. 

This implies that * >-n where  9 is the angle between the tangents 

T]P and T2P to YI er.d Y2 respectively. Let BB' be th" bireotor 

of • *nd let AjPA£ be perpendicular to 3P5' at P. Note that 

any vector dOj* that lies between PA. and PT. constitutes loading. 

Any vector doiV lying between PAg and PT2 slso constitutes 

losalng. Now it is clear that equation [5] cannot hold generally 
(1)    (2) 

since it is possible to find de  and d<j   that individually 
1J U (1) 

constitute  loading but together do not; e.g.  If do*.,    is  sym- 
(2) metric  to da\/ with respect to B'PE end both lie  below AJPAJ. 

! 
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'•'ork-hardening criteria [l] and [2] yield information 

on the location of the plastic strain increment vector. Equation 

ilJ implies thst the plastic strain increment vector shall not 

make an obtuse angle with any possible "elastic" stress vector 

whose end-point is the point from rhich loading takes place. 

Therefore, the plastic strain Increment vector must be contained 

Inside or on the surface formed by the normals to the smooth 

loading surface points in the neighborhood of the corners. 

Equation [2] Implies that the plastic strain increment vector 

does not raalre an obtuse angle with the stress Increment vector. 
p 

This fact implies in turn that one direction of dc,.. cannot 

suffice for 811 loading directions from a pointed vertex (Fig. 3 ). 

Although loading functions with pointed vertices ap- 

parently lead to mechanical difficulties of manipulation, it 

should not be concluded that this is alloys so or that the smooth 

loading functions are preferred.  Indeed, nith the nctable ex- 

ception of v. Kises loading function J » k ( 8) almost all 

attempts to fit experimental data with cnooth loading functions 

Iced to expressions involving J (9)f anc these expressions are 

aljroat universally cumbersome for any except the simplest loading 

paths. Tresca*s maximum shear criterion on the other h8nd has 

enjoyed a popularity comparable to that of J2 * k because of 

its eas*> of application (lC)j yet this function has corners on 

its loading vjTface. Of course in Its completely general ana- 

lytic form J-> appeerr here also; however, as ccRoonly employed, 

it is posribli to use it vithout reference to J.*.  It is also 
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noteworthy that  the recent development of a mathematical theory 

of plasticity based on slipping  in individual grains permits 

and in fact requires pointed vertices (11).    Furthermore,  the 

recent development at * ro*n of plastic stress-strain relations 

for soil ns char.ics also permit corners. 

i 
i 

< 

Work-KardenlnE and Stress-Strain Laws 

From a mathematical standpoint the idea of on "increment" 

is not always clear. For this reason it is often desirable 

to define loading and allied concepts in terms of time rates. 

When a material has applied to it stress rates that give rite 

to plastic deformations, those stress rotes are said to consti- 

tute "loading". If a material exists in such a state that load- 

ing is possible .rom that state (lnciplently plastic state) 
» 

stress rates tnat lead to states from *hlch loading is impossible 

•re said to constitute "unloading". If a material is in the 

lnciplently plastic state, non-zero stress rates that constitute 

neither loading nor unloading are termed "neutral loading". 

Prager has stated four criteria that a useful mathema- 

tical stress-strain relation for plastic materials should satlsfv 

(12)i irreversibility, continuity, consistency and uniqueness. 

Irreversibility requires that the *ork dene by the stresses on the 

plastic strains be positive. Continuity rruires that »ny neu- 

tral loading ray be considered a Uniting c*se of cither loading 

or unloading. Consistency requires that any loading from a 

given stress st&te lsads to stress states from which loading is 

again possible. > ir.aliy uniqueness requires a unique determina- 

tion of stress ri»tes throughout s br>dy provided thf mechanical i 

I 
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»itste  (including stress-strain historv)  of  a tody and the  system 

of surface  traction ratej on   the  body be-  t'lvcn.    The  question 

arises,  "Docs the  assumption of woik-hardening in any way 

guarantee th*se conditions?" 

Irreversitlllty is  ossured  immediately by work-hardening 

condition (c)  that states that  the  total work done  in any evele 

must b<   greater  than <r  equal  to zero,  the  equality holCing only 

if no plastic oeformation hss occurred during the cycle. 

It  is not apparent  at  this tlce that the  assumption of 

work-hardening implies uniqueness of the  ab~ve  stated boundary 

Volue problem.    Certair.lv it cannot unless  a stress-strain lew 

gives  uniqueness  in   the  small.    Even then it is not app«i ^nt 

that  the boundary value problem is uniquely satisfied.    The 

assumption of  linearity gives uniqueness provided  the materiel 

is loaded throughout since  It can be  shown by methods analogous 

to those used to prove  the theorem of virtual work that  if  two 

seta of stress rates and strain rates satisfy equilibrium and 

compatibility and   the boundary value problem given above,   then 

r<<(3). ;<2>> u(1)-;(2))dvao 
v  ij    u     u    IJ 

• (1)     • (2) 
But since both 0-.  and c    constitute loading, work-hardening 

end linearity imply t-at the integrand Is always positive. Hence 

the two solutions tust coincide.  It Is not obvious that the 

(1) 
result is still valid if, say, o<<  constitutes loading and 

(2) 
Oj«  unloading.  If, however, a loading function is also esrumed, 

linearity will guarantee that it implies a smooth surface in 

stress spece.  Under these conditions the ;r:of offered by 

*~   n  l tMtdi 
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Hedge and Prsger (13) now holds, and uniqueness felloes even 

though f is not necessarily a function of J? and J^ only. 

Finally continuity and consistency are properties of 

the  stress-strain law itself and do not depend on the assumption 

of 7?ork-hardenmg. 



11-"" 19 

2XfiU&&tf8X 

1. Drucker. D.C., "Seme Implications of T,ork-Kardening and Ideal 
Plasticity", Quarterly of Applied Mathers; ^ics, ^ Ho. 4 
(1950) pp. 411-418. 

2. Drucker. D.C., "The Significance of ^no Criterion for Addi- 
tional Plastic Deformation of Metals" Journal of 
Colloid Science (Rheology Issue), 4 (1949) pp. 299-311. 

3. Hard* lman, G.H., Lin. C.C., and Prater, '/.. "On the Mechanical 
Behavior of Metals in the Strain-Hardening Range" Quar- 
terly of Applied Mathematics, 4 No. 4 (1947) pp.397-407. 

4. Drucker. D.C., "A More Fundamental Approach to Plastic Stress- 
Strain Relations", Proceedin-s of the First National 
Congress of Applied Mechanics, A.S.M.E. (1951) 
pp. 487-491. ' 

5. Edelman. F.. and Drucker, D.C., "Some Extensions of Elementary 
Plasticity Theory", Journal of the Franklin Institute, 
S251 No. 6 (1951) PP. 581-605. 

6. Edelman, F., "On the Coincidence of Plasticity Solutions 
Obtained "ith Incremental end Deformation Theories." 
Proceedings of the First Nati r.el Congress of Applied 
Mechanics, A.S.M.E. (1951) pp. 493-498. 

7. Drucker, D.C., "Stress-Strain Relations in the Plastic Range", 
A Survey of Theory and Experiment, Report All-61, 
Graduate Division of Applied Mathematics, Brown 
University (1950). 

8. Mlses, R.v,, "Mechanic der plestischen Formaendererlng von 
Xristelien", ZaMM, £ (1925) pp. 161-1*5. 

9. Stockton, F.D. and Drucker, D.C.. "Fitting Mathematical Theory 
of Plasticity to Experimental Results", Journal of 
Colloid Science (Rheology Issue), $  (1950) pp. 239-250. 

• i 
10. Trcsca, H.,  "Memoire sur  le  poincennagr   des metaux et des 

matieref piastres", C. F.,  Paris, y^O (l*70)pp.27-31. 

11. Batdorf,  S.B..  en-'  Budianskv,  E.,"A Mathematical Theory of 
Plasticity ^csed on  the Concept  of  Clip",  NACA 
T.K. Nn,  1871 (1949). 

12. Hedge,  P.,  and Prnper,  W.,  "k Variation*! Principle for Plastic 
Materials with   .trsin-Pardenins,", Journal of Vethematics 
and  Physics, j£Z **•  1  (1948)  pp.   1-10. 

13. Prager,  V-.    "Recent  Developments in the Mathematical Theory 
of elasticity". Journal of Applied  Physics, 3} He.   3 
(1949)   pp.   235-241. 

—*~£- 



All-88 20 

M+6M 

Oumbbell cannot bounce past neutral  equilibrium 
pclnt. It cannot even attain it if dumbbell causes 
plastic deformation. 

FIG. I 

At 

.cti en 
d(T      and d(T   constitute loading. d<T-dO"   + 
dCT       does not. Linearity is impossible. 

FIG. 2 
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Introduction 

iSost efforts to describe mathematically the stress- 

strain relation of s *ork-hardening material in which time and 

temperature effects are absent have adopted the hypothesis of 

the existence of a loading function. A loading function is a 

function of the state of stress,strain and history that determines 

when ano if additional plastic strains will tcke place. In stress 

space any stress state is representable by a joint, or, alter- 

natively, by a vector from the origin to the point (Flg.j ), 

Similarly, increments of stress from  s given stress state are 

representable "by incremental vectors from the existing stress 

point. Let f be a loading function. In stress space f * c is 

a surface celled the yield or loading surface. Drucker has 

shown that his work-hardening criteria imply that the loading 

surface is convex (1). The interior or inside of the loading 

surface- is that portion that originaliv contained the zero-stress 

point. 

Let o be a stress state, and let dd be a stress incre- 

ment.  If o lies or. the lo?din£ surface, and if do points coward 

the ovtside of f = c, then plsstic defoliation will occur. Such 

increments of stress constitute loodinp. If do lies on the load- 

ing surface, then do constitutes m utral loading (2 ). Finally, 

if efl points toward the inside, do constitutes unloadinf. In the 

lost two cases all deformations art- elastic. In the first case, 

of Course, elastic deforn-acion occurs as *o:i as plsstic,  All 
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stress increments lying 1 ithin or  on th-   loading surface ere 

accompanied by purely elastic changes. 

For ideal plasticity the loading function is fixed in 

stress space.      hen the stress point reaches  the yield surface, 

uncontalned plastic deformation can take place; but this defor- 

mation has no effect on the yield surface.    For  a work-hardening 

materiel, however,  the loading surface moves locally with the 

stress point during loeding.    The movement of the surface may 

be an expansion, translation, change of shape, or any combination 

of these. 

Let the strain space corresponding to a given stress 

space be s^&r*aposed on the latter in such a manner that the 

corresponding axes coincide.    Let the stress point be on the 

loading surface, and let t2ie increment of stress constitute 

loading.    Prager showed that if the loading surface had a con- 

tinuously turning t8ngent plane at the stress point (iee. was 

"smooth*'), then the increment of plsstic strain would be parallel 

to the outward normal to the  loeding surface at the stress point 

(3).    Stated again,  the direction of the plastic st**9in increment 

vector is determined by the direction of the normal to the loading 

surface if the normal is unique. 

To fix the ideas under discussion es well as to prepare 

for the  arguments to follow,  consider 0 plane  stress state re- 

ferred  to its principal axes.     Such a stress  state  say be com- 

pletely described by a point in a two-dimensional representation 

of  the strens space.    ?hf-  load in?   surface will be represented by 

c curve  - th«   curve aetnail* be in? the   Intersection of the-  loading 
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surfece  end  the   plane dete-rr.ined  by the  two non-zerc principal 

stresses. 

Consider  a 3tress  point on the  loading cur ve( surf aco). 

If the loading curve  is smooth at the  point  (Fig^a)  there will 

be a unique outward unit normal, n.    Any incremental plastic 

strain vector  arising from loading from the  stress point will be 

parallel to n.    Loading, neutral loading,  or unloading will bo 

determined by whether  the   stress increment vector makes respec- 

tively an acute, right,  or  obtuse  angle with the normal. 

Contrast this situation with that  in which the stress 

point ij H\ a pointed vertex of the  loading curve     (Fig.is^). 

At such a point "the normal to the  loading surface"  is not de- 

fined.    Furthermore,  the direction of the plastic strain incre- 

ment vector is likewise undefined.    It can be   shown by the  use 

d L Tucker** work-hardening criteria  (4)  that    (a)  there  is more   than 

one possible  direction.,   (b)  cne- direction  is not sufficient,  and 

(c)  the plastic straining direction must  lie between or on the 

normals to the  intersecting loading surfaces that form the pointed 

vertex (i.e.  in I.If.  lb,  on r. which is perpendicular to 3,  or on 

n which is perpendicular  to T,  or  in the region      between them). 

It is te be  noted  that the determination of the  strain 

increment v ctor  is not complete, ho-ever,  until its magnitude 

os *cll  ca its direction i3  known.    7».    magnitude  is fixed  raath- 

emrticiily by som--   hypothesis r«ietlnt
r   the   strain  increments  and 

the   stress increments.    The   cost common on*.   Is   thet  the  strain 

increments  ore   linear  functions of  the  jtrcss increments. 

—tw—r- 
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k  previous paper ( 5 ) reported briefly the results of 

an experimental program Invest letting the stress-strain relations 

of 3 thin-railed tub;. Ihc primary purpose of the paper was to 

present the experimental techniques and details.  Insofar as the 

enelysls was carried out at that ti-c , it ;,3s felt that the con- 

clusion was Justified that the direction of the strain increments 

were independent of the direction of the stress increments. This 

conclusion is another way of stating the existence of a smooth 

loading function. It was pointed out there that the question 

of linearity rould take additional analysis. 

The purpose of this paper Is t« pr sent a much more 

sensitive analysis which ecnfiTM the conclusion stated above 

in the case of one of the tubes but not tic other.  As a con- 

sequence, linearity is not always attained. 

linearity 

Linearity applied to the plastic incremental stress- 

strain rclctions refers onl" to the increments of the- stresses 

and plastic strains.  It mrans that if t<?o stress Increments 

do, and do2 both constitute loecin- from e str* ss state, de ^ 

and d«, being the associated plastic str-ln Increments, then 

the Increment do^ plus do~ constitutes loadlnc -no lh<- resulting 

plastic streir. is <\t^  plus dc2. "his relation impll s that for 

d^vs-tbet constitutes lordinn 

deU * *ijkc **: fii 
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in which the   &««kl ?n  explicitly cssumc-d  to be  independent of 

the  increments of stress ond strain,  but arc   otherwise unre- 

stricted  insofar  as the   assumption of linearity is concerned. 
p 

In   [1] z. . is the plastic  strain tensor  and  0j«  :s  the   stress 

tensor.    In pl?ne  stress referred to principal axes fixed in 

space it is   sufficient  to consider  two members of equotion   [1]J 

dcy 3 Axd02 * V°y [2] 

P 

where x and y »re fixed directions,    fince  the experimental 

work to follow rss  analyzed  under  the  rscumption of plane   stress, 

attention  is restricted  to equations   [2],  although all conw:erit3 

made concerning  [2] can easily be generallied in order  to apply 

to  [1], 

It  should be emphasized  that  linearity and  the existence 

of a loading function arc  both assumptions; either may be made 

i i .hout the other.    However,  If for instance,  linearity has been 

accepted,  the addition of the  assumption of a smooth loading 

surface implies a roletlon bct^etn the A's  and B's since  the 

direction of the  jtrcin increment is determined bv the  locding 

surface    The  relation <«• 

Again,  since at smooth points cf  the  lcodin* surface  th*.  direc- 

tion of th<   strcin incr.mfcnt  it orthogonal to the surface i 

?x   »    .y [4] 

th».   relations   '3l and   {& ] do r.r>t,   of coir- sc ,  altc;   the   foct th« t 

the magnitude of  tho   strJln-incr-ment  v.ctor   la rttcrrrlned by a 
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linear combination of stress increments. On the other hand the 

addition of the assumption of linearity everywhere to that of 

the existence of a loading function imposes conditions on the 

allo* able forms of the loading surfaces: they must be smooth 

everywhere. This last fact follows from the possibility at a 

corner of picking two increments of stress each constituting 

loading, but v<hose sum does not constitute loading. Kence the 

sum of the corresponding individual plastic strains would not 

equal the 2ero plastic strain corresponding to the suns cf the 

stress increments. Thus the condition of linearity would be 

violated. 

In any case the hypothesis of both the existence of a 

loading fraction and the validity of linearity Implies equations 

[3 j and [4] and the smoothness of the loading surface. It fur- 

ther I'.mpliea that the magnitude of the strain increment vector 

is given by a linear combination of the stress increments. These 

implications afford a method of investigating non-linearity. If 

the loading surface is not smooth or if either of equations [3] 

or [*'J la not satisfied, then the loading surface does not exist 

or the relation is not linear.  If the existence of a loading 

surface is accepted the conclusion would be non-linearity,  Again 

if the magnitudes of the strain increments are not linear functions 

of the stress increments, the relation carrot be linear - this 

rer sit, of course, is independent of the existence or non- 

es Is tence of a smooth losdir.c function. 

"J3E£ 
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Description of Experiments 

The experiments consisted in subjecting thir----alled 

tubes to simultaneous and independently varying  internal pressure 

and longitudinal pull (referred to also ss "load").    The  test 

schedule called for  locding by longitudinal pull into the plastic 

region, the pressiure remaining meanwhile at a constant small 

reference value,    niter  this  state had been attained, both the 

load and the pressure were varied  independently* 

It is known that v, kises*  yield criterion (J0 = k)  is 

a good approximation to the actual loading function.    By this 

criterion for the load and pressure ranges used here tfe*  incre- 

ment in the loading function caused by -an._increase of 10 lb. in 

the load is two hundred ti<aes as large as the corresponding in- 

crement caused by a 10 psi increase  in the pressure.    Insofar as 

was possible, therefore, pains were taken to insure tbet the pull 

was always increased during the  test to insure that the material 

was always loaded.    The actual form of the loading path is given 

in Tic 3b and 4b. 

The tubes were machined with e 9-inch straight cylin- 

drical section the centrel five  inches of which constituted the 

test gage length,    the outside di&cneter  of  the  central section 

was 2.20C  inches and the well thickness was 0,100 inches,. 

During s test run the following csta were recorded: 

the longitudinal pull on the tube, the pressure within the tube, 

the change  in length of  the 5-inch gage length, and  ti-e change 

of diameter of the tube at each end of the 5*-incb gage length. 



A11-6V, 29 

The tube dimensions were held within O.OC05 inches both 

in diameter and in nail thiela-iess over the entire 5-inch gage 

length. The loads were measured to vithin + 20 lb. The pres- 

sure was recorded within • 5 psi. The longitudinal change in 

length was magnified 19.8 times. The change in diameter of the 

tube was magnified 10.9 times.  The change in diameter ased in 

the test analysis here was the average of the two readings taken 

at the ends of the gage length. Foth longitudinal and diametral 

changes were read after magnification on dial gages with a least 

increment of 0.0001 inch. 

For complete- detail and description of the experimental 

procedure see (3). 

Analysis of the Data 

Although net explicitly stated, the discussion of stress, 

strain relations so far has been for a point of a material body. 

In a physical test it is clearly necessary to consider the be- 

havior of a region of 0 body, Keesuring quantities over a finite 

distance lamediatelv raises the question of whether or not the 

aggregate properly reflects the behavior of the single points. 

The attitude adopted here was that the best approximation that 

could be obtained for the behavior of an arbitrary particle was 

the average behavior of A  large group of particles subjected as 

nearly as possible  o the some conditions.  Inherent in this at- 

titude is the acceptance of a statistical homogeneity in the 

material.  Although such homogeneity was not completely realized 

ir. the tubes vsed  here, it *ss f:lt thct the deviations from it 

ftca in 'm 
"-•«* "" "  
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w^'-' small enough not to affect the conclusions. It should be 

pointed out that, in the crse of retaIs nor,-homogeneity effects 

are minimized hy the use oi large *epe lengths. 

No mention has been made cf isotropy because its presence 

or absence do* 3 not affect the arguments if the body is reasonably 

homogeneous. 

It should be remarked at the outset that the pressures 

Involved arc smell compared to the loads. The x'sriations of both 

the pressure and the load are small compared to the existing load 

state. Fence, pressure and load variations wore corsidered to be 

infinitesimal in the analysis. Thus it was assumed that if 

f  v, re valid, equations [3 1 and [4 3 would not be violated 

within the sensitivity of the «sxperiment for sny pressure loop 

(Fig. 3b or 4b). 

The purpose of the tests ws to check che validity of 

the assumption of linearity, which - as has teen shown - can be 

done by checking the validity of equation [2 1. Since under thin- 

welled tube assumptions the stresses and hence the stress incre- 

ments are linear functions of the load Increments and the priest*? 

increments, it is sufficient to check the validity of the form 

de- • axJL 4- tyip 

* y = aydL + bydp 

where a's and t's are  to be  independent of dL and dp.    Furthermore, 

•s  stated in the  last section,  the quantities actjally recorded 

during  a tpst run were  the readings  cr dial  snges.    From thc?e 

readings th* numbers of  least  inert—c-nts of each dial gage 

a asured from some rtf^rence reading were computed  for every 

i 
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entry.  The nominal strains vere computed from the number of 

least increments by multiplying them by an appropriate constant 

(* and -X).  Again a multiplicative constant does not affect the 

validity of equation [5J ; hence 

de| a de£ = na^dL + xb,dp [6 a] 

de? =-de£ « \a dl+2 \b dp [6 b] 

P     P 
where e£ and ey are  the number of least increments from the ref- 

erence readings in the x and y directions respectively. 

Although [6] la the form that is desired, it is not 

the form obtained directly by the use of the computed increments 

of the dial readings. These letter contain also the conti ibu- 

tions of the elascic strains. In order to obtain a set of in- 

crements that can be used in equation [6], it is necessary to 

subtract from the total increments recorded during a test those 

Increments that represent elastic strains. To this end before 

•nd after each test run purely elastic check runs were made- both 

with pressure variations only and nith load variations only in 

e c- 
order to determine the slope of the de  vs. dL and the de  vs. 

dp curves end the changes of these slopes during the test run. 

These data indicated that «ith no appreciable crior the elastic 

coefficients could be considered constant.  The elastic increments 

•ere computed frc* the loid and pressure data and subtracted from 

the total JJscr«"me-nt3.  The differences were used as representing 

the plastic ii:cric«nts in equation  [6], 

Since elastic strains ar' linear functions of the load 

and pressure, it *B*  not absolutely nectssorv to subtract them 

v^r.;;- v ' 
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In order to check the validity of a linear fores such es [6]  . 

However, since a plastic stress-strain relation was sought, the 

results "were more easily interpreted when free from the effects 

of the elastic behavior. 

Equation [3] suggests the method of approach used in 

this analysis. If a loading function exists, the validity of 

linearity implies that at least locally it should be possible 

to make the plots oj vs. L and e^ vs. L coincide? by changing the 
p 

e scale of one plot and by translating the plot vertically. 

P     P The plots should coincide in spite of the fact that e£ and e^ 

aro functions of L 2nd p but arc plotted apainnt only L. If, 

therefore, the plastic strain scale of, say, c^ were reduced by 

P    D P    P 
e suitable factor q, the plots q(e£ - e£0) vs. L and (ev - e ) 

P     D 
vs. L - where e20and e£0 correspond to soje fixed volues L0 and 

pe - should coincide, kxxy  deviation from coincidence would be 

indicative of non-linearity. 

Comparison of the t^o plots was simplified by the in- 

P      P P    D    P 
troduction of &B=qAe' -fie  where £e* = eF - e^0 indicates the 

number of least increments of the dial gape from the reference 

• _• q v;as determined so es to make the overall plastic strains 

in the x ond y directions e'quol for the entire test run: 
p 

i.e. _    overall Ae„ 
q •        f_ 

overall ae- 

A0 is therefore a measure of the deviation from coincidence of 

the t«c plots. Its units »rc the same es those of e„. If lin- 

earity Tjt-re valid, then £8 would be zero - at least locally. If 
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there were a systematic variation of A9 with dL or dp, then 

linearity would be impossible. 

Fig. 3 shews that for tube GH A9 is essentially zero 

over its entire length. Linearity Is possible, therefore, for 

tlis tube provided the magnitudes of the strains prove to be 

linear functions of the stress increments. Fig. * on ths other 

hand shows for tube AB not only that A9 is not zero, tut that 

It is stronglv dependent on the (incremental) pressure deviations. 
4 

This dependence is evidenced by the simultaneous appearance of 

the loops in Fig. 4b and 4c. Clearly for this tube linearity 

is impossible, and the plastic stress-strain relation must be 

non-linesr, 
i 

'rhere seems to be little question of the existence of 

a loading function when tire end temperature effects are absent. 

However, it is not nccesssrv to use Its existence to prove non- 

linearity in the case of tube A3. If linearity were valid, then 

A8 vs. L (Fig. 4c) would neve the same shape as the p vs. L 

curve with the exception of a local scale factor that - like the 

rccfflcicnts in equation [5 ] - could be a function of the load, 

pressure, and load-pressure history, but could net be a function 

of the load or pressure increments. Fig. 4b and *c show 

that t! is is not the case. The- general shape of the  loops in 
w 

32  do not correspond with those in 3b • Thf peak points in 

the t*o sets of loops do not correspond. Although there c*>n be 

no doubt that the loops of 3c e»^ closely related to these in 

3b , there is slight tut definite lag in toth the beginnings 

and rnds of thos» in  3c relative tc those in  <b .  It would 
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not be pcssiti* to find coefficient3 ir. equ3tion[2]whi:h are 

functions of the lead and prersure onlv that would silos a linear 

transformation of 3b and  3" within the limits 01 experimental 

error.  Thus with or without the •ussuaic* ion of a lording func- 

tion, the plastic stress-strain relation for tube AB must be 

considered non-linear. 

Strictly speaking, it is not necessary that there be 

no dependence of 40 on what h3s here been considered increments 

of pressure, dp, even if a saooth loading function is assumed to 

exist. This is true since in reality the measured "dp's" are 

finite increments of p.  In this eventuality, however, the varl8~ 

tlons of A9 with p would have been of a smaller magnitude. Var- 

iations of t: is magnitude could occur of course for  loading 

function* whose surfaces have a pointed vertex, but non-linearity 

In this case la assured as seen previously. Finally 8 similar 

argument could be applied to cepenc'er.co of o9 on L or dL. 

To establish the validity of linearity for tube GH it 

would now be sufficient to examine the dependence of only the 

magnitudes of the plastic strain increments on th° stress incre- 

ments, hoover, the computations for the direct determination 

of the coefficients in equatlcn[2]were Just as simple and wtre, 

therefore, made. 

The method consisted In first approximating the overall 

surv* In Fig, .2a by a smooth curve. The deviations from this 

curve were tben aatthsd by • constant tlirea the pressure for 

each cycle. The slope of the saooth curve (together with q, 

H, andX) gave the a's equation [9), and the multiplier of the 

pressure gave the b's. The b*a were not constant throughout the 
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fstf  to be  sure,  but could be  considered  constant within any 

om   cy-le  to thfe degree  of  accuracy look-d  'or.    The  fit obtainoc 

by this process was within the  exp*.Tin* ntal error except  in the 

neighborhood  of points of unloading.    In these regions the  lack 

of correspondence was felt  to be due more  to the hysteresis in 

the  testing machine  than to a non-lincority in the magnitudes 

of  the  strain  increments.   (In Tf    ^nc;   to hysteresis in the 

testing machine,  see reference  (6).)    It was felt that linearity 

*.as well justified  in the case of tube GH. 

Smooth and Pointed Loading Surfaces for Tubes GH and A.B 

The question is still open as to what type of loading 

smface best fits the date presented.    To investigate this 
P P question consider the differential ofA9 : d9 • qdex - doy , 

. 
Rocslling the definition of x andX. • 

qdex • doy s q*dex *   dey * 

Define ka • (q*,M.    Then qde^ - do£ may be considered as the 

sealer product cf dr   and ka; that Is 

qdej - de* = deP
rk<J 

= ldc^| |ka|cos«; 

whern   £ is considered tho  sngle from ka to dea.    The cross 

product of ka and de£ Is 

=   |dcP||ka|sin< 
X.    .   p        C. «     p 

a  - de    -  —de-f. 
*     *       \   y 

where *;aa is the   tvo dimensional alternating tensor.    Dividing 

mMmniw a »* t^m«nilW 1ST nmm*m*«wn ;• 
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P t} " D Q H P 
[qdCjj - deT,] byf - JTCQ*30,)- V Q^y 1 gives 9n expression for the 

co4;(, "ote that ka makes an angle cf 90° with the direction 

of the overall AgP.  If x is defined to be the angle from the 

overall Ae£ to de£, then x3^"^0* Hence 

- tan X = 
q3°S = dfeX 5 

Although It is not feasible to oak'.1 a direct computation 

of Aj tan x for every set of increments, th slope of the plot 

(qAc* - Ae*) vs. (qAc£ + C^)* A e£) [i.e.A9 vs. A\|>] gives the 

tan x *o within 8 constant scale factor.  Fig. (5a) shows this 

plot for tube AS. A similor plot for tube GK is not shown since 

the variation in A8 (Fig. 3c) is too small. Since 

(qAe** • (£l) A e£) [=Ai|>] is not a constant times the load, a plot 

of p vs. A^ was also given for ease in correlation of the first 

plot *.:ith the previous data (Fig. 5h). 

There are many interesting observations concerning 

(Tig. 4 * %  The first is that the magnification of very small 

strain differences represented in the qAe** -A e£ direction has 

not masked the consistency cf the behavior. 

The other points of interrst concern the shape of the 

burps. Pr'dominantly they ere compos'd of three principal clop*.si 

•n Initial slope up, a horizontal slope at the top (missing in 

•e»* cases) followed by a slop* down. The slope down in the last 

two bueps is sade up cf t*o slopes, the steeper coming first. 

The initial slope has no relation to the slope- of the correspond- 

ing pressur. slop*.. The final ••.lop? st *rs  to vr^ok into f o 

slopes or to oscillate between two slopes if the correspond- 

ing   pressure   slope  is  too  flat.      "filth   the 

- I,IK • • ••• •! IT-.* i»—m imiammmmmmmmmawmmmmnn^t»9i>0» 
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exception of the transition from the- downward slopos to the hor- 

izontal slopes, the transition points are well defined, i. e. 

the change in slopes is ccfinite. The bumps themselves become 

fletter as the run proceeds:  the angles between the initial end 

the. final slopes become greater. The progress of the change Is 

itself Interesting. The first tvo bumps arc- almost scsle models 

of each other. The next tno have roughly the seme initial slope 

but much more gentle final slopes.  The last bump hes gentle in- 

itial and final slope. Finally, the points of slope change do 

not seem to coincide exactly with the points of direction change 

of the loading path, but seem to lag a short distance behind 

them.  At the top of the bumps there seems to be no correlation 

between the loadin* direction and the change to or from the hori- 

zontal portion of the bumps at all. 

If the loading function associated with the tube in ques« 

tlon were smooth, and if In reality the increments of pressure 

cannot be assumed to be infinitesimal, then an increase in pres- 

sure from the lord-pressure state us:d in the run here would 

result In s decrease In the angle that the normal to the loading 

surface makes with the horizontal, i.e., the normal would be ro- 

tated In a counterclockwise sense. However, these angle changes 

would be of smaller order of magnitude tLsn those observed. 

To Illustrate the point, Table I was prepared. For 

each loading cvclv the ranges o** the ratio de /dej| and of the 

corresponding angle, 1, that the strain increment vector makts 

with the horizontal is entered en the one hend, and on the other 

*m 
* *        WSn, 
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the  same quantities computed  on the basis of  a J-  theory.     Tho 

angles in the former entry »ere  computed frooi the   measured   slopes 

of  the  q^eljj  - nCy vs.  qAe$ + ($2) Ae£ plot.    The  angles  in  the 

prediction of the Jn theory seem a few degrees largo-,  but such 

a constant error  could ccsily be  accounted for  in tho  frame  work 

of o lincDr  flor theoryt v..g. by the  inclusion of  a J\  term.    The 

magnitudes of the chenges,  on  the  other hand,  are  of the  correct 

order for any smooth curve  to fhlch J2 is  a reasonable  approxi- 

mation.    Clearly this magnitude  is not the required  one.    Tho 

largest angular difference in the entire J~ part of  tho  table  is 

1.4  , while the smallest observed angular difference  for  any 

single evele was ^.9°. 

another demonstration illustrating the  same conclusion 

is provided  in Fig. 6.    Here rn idealized locdlng cycle,  p vs.  L, 

Is given In Fig. 6s.    In Fig. 6b the pointed curve represents 

tho corresponding prediction of the <£e*j -O0y vs. L plot for a 

cornered loading surface.    It is assumed for  the  sake of simpli- 

city of calculations thct for dp • 0 the loading direction of the 

strain increment vector *£ makes an angle of  -22.8° with the 

horizontal,    "hen dp>0,  the direction of dej (as woll as the 

normal to the  loading  surface) makes an onglc of -5.4    with the 

horizontal.    Finally,  \then dp<Of  the  anfle for both the straining 
o 

dirceticn end  the  normal  is  -?9.3  • 

The flatter curve   in Fig. 6b shows the  corresponding 

prediction of  p loe-tilnf  surfsce  that has the  same  changes of 

direction of  the  nortol  to tht   loading surfece  as  a J2 tKcry 

t?o"ld for  tie pressures ar.d  lo-»d* of  this  cycle.    The  surface hss 

mm        '•» niiimi 
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been tilted relative to the J_ theory surface, however, in order 

that qdo£ - de£ = 0 when dp = 0. 

The loading cycle in Fi;,. 6a vas chosen as a crude but 

simple epproxidation to the second losing cycle in Tig, 4b. 

Lxomination of the pointed curve in FI5. 6b shows that the gen- 

eral features of both shape and size of even this approximation 

ere in foir otreement *ith the actual cose. The flatter curve, 

on the other hand compares poorly in both features, but in par- 

ticular with respect to the magnitudes of the ordinatcs.  It 

should be noted in passing that after several cycles such as the 

one presented here the difference in the two predictions would 

become obscured by the cumulative effects and would not stand 

In such sharp contrast. 

The arguments above lead to the conclusion that a corner 

does exist on the load In? surface of the tube A6. Analogous 

arguments for the tube GH lead to the conclusion that its loading 

surface docs not have a corner large enough to be detcctod by 

the sn*lysis presented here. It is therefore considered smooth. 

(The former result ago in precludes the possibility of linearity 

in the ease of the tube ,3.) 

The method used in the investigation of the corner in 

the loading surface was not the only one available. »,rother way, 

for example, nas to plot c^ vs. c^ end then to determine whether 

or not there wcr« any iocPi variations that could be correlated 

*lth changes In the direction of loading. If the locol variations 

m  ini mi III •••- •  — • w~~T***r^~^^S3!J^^'M 
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were absent, then there --ould b<- no corner in the loading surf see. 

This BKthod -??s followed in reference (5).  The plots wore good 

approximation to straig}-**; lines in that the deviations froa 

straight line approximations fitted to the points were small. 

It was felt at the time thrt the smallncss warranted the conclu- 

de* thct the luuuing airectlon was constant. The more sensitive 

analysis presented here shows this conslusion not tenable in the 

cose of tube «,B, although, of course, it is for tube GH.  .".t 

beat the plot of c^ vs»e§ i* insensitive compared to the plot 

qftoj -AeP vs. q&e$ • (^3)2 Ae* . 

Insofar as the author is aware the literature gives no 

report tc date of the observance of corners on loading surfaces 

for pclycrystalllnc materials. There apparently are two reasons 

why this may be so. First and most Important, the corners were 

usually not looked for. The second reason stems directly from 

the first, most experiments have not been so designed that the 

corners would show. The usual experiment that concerned Itself 

with loading surfaces has been designed to show for a given 

loading dlroctlon at what stage yield took place.  /»fter yield 

hod been reached, a loading path of arbitrarily changing direc- 

tion has not been followed, Yet this type of path is the only 

one that can show a corner completely. Some tests have followed 

s loading poth of veryin? direction, but one that turns in one 

direction only. At best such e path could pick up the effect 

of only one side of a corner. 

It is interesting to note that in the cose 0' tube ..B 

nfUr the corner wts farmed (rssualng that the original loading 
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surface *ES smooth) the effect of loading in many different 

directions from the corner had the effect of flattening its 

If the original surface tsos smooth, the loeding in one direction 

seemed to heve a tendency to form a pointed vertex, while load- 

ing in many directions from the vertex seeped to destroy it* 

It should be emphasized thot the corner did not appear 

in both tubes. It cannot be inferred that for a given material 

there «ill be or will not be a cornered vertex in the loading 

surface # 

With regard to the direction of the strain increment 

vector associated with a corner, no simple rule for its deter- 

mination was obvious. 

In reference (5) it was assumed that the plastic creep 

end strain increment vector wre closely parallel, and that the 

creep effects w.re not important in the overall trends. It is 

interesting after closer studv to consider the roblem of creep 

again. 

Creep es usually defined is thot permanent deformation 

of B  boev that occurs under end due to constant londs. It is 

thought of os occuning in thru pheses: prlmorv or transient 

creep, seconderv or stecdy creep, one tfrti3rv or iccclersting 

creep. Primary creep exerts its influence lamedlately after 

the cessation of locding :nd is characterised by a decreasing 

strain rote. Secondary creep hss an essentially constant strain 
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rate  that is the minimum of the  three types discussed.    Tcrtisry 

creep begins with the  first increase- of stTiin rate  after  sec- 

ondary creep.    This dirci'.ssion is ccr.ccrn-.-d only vith the  first 

mentioned  type  since,  cs mentioned  in  (5),   tests  indicated  that 

secondary creep effects were negligible,  and since-  the  test was 

not conducted over a long enough period for  tertiary creep 

effects to occur. 

If 8 given material is loaded into the plcstic region, 

end if the loediiig  is then stopped,  cut h Id constant, creep 

.;ill usually occur.    Questions present themselves ss to what 

happens if the  lodins inst«.cd  of King mod:,   zero were to have 

its rote decreased to a  small figure, or wrc changed in direc- 

tion,    .'.lthoufh these questions  -s yet arc not answered,  it 

seems ss reasonable  to the author thet en immediately preceding 

loading should add an additioral pcrmDnent strain to the  strains 

arising from a state of subsequent loading as that It should 

add an additional permanent strain to the z,ro permanent strain 

arising from a subsequent cessation of loading. 

Froa an experimental point of vlv<, hovevtr,  thero Is 

c vast difference.    The  time Goptncent permanent strains in the 

latter cose  can easily be diffej ertlr.trd from z.ro strtins, 

while in the  former cose  there is as vet no decisive way to 

distinguish xshlch permanent strains ere  tiire dependent on tho 

preceding  loading end which are  caused by the  ne«. state of 

loading. 

It »!»ht b<-  expected that cft-r deviation fror. one 

direction of Iot«din< that has b en followed  for   c • hile  the 

"T<OP fp—ff—^rf "-.'"• *—".'•< y^rT 
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tim* dependent straining resulting from that loading v.ould 

appear as a tendency for the material to continue strrining in 

the sac*, way. Put another wov It might b*.- expected that there 

would be e time lag between the change of loading direction end 

the change of straining direction associated Pith it. The loops 

in Pig. 3c give evidence of a small lag between these changes. 

The logs arc much too small to invalidate the conclusions drswn 

before; end as stated in (5) the overall efftcts were not in- 

fluenced by creep. 

Conclusion 

Careful examination of two thin-welled tubes shows that 

the assumption of linearity in the plastic stress-strain law 

is justified within the experimental accuracy for one tube, 

while it was not Justified for the other. The forner tube 

possessed a smooth loading surface while the latter had a de- 

finite corner. Techniques now exist for the investigation of 

loading surfaces for cornerss 

Tine effects appear in the analysis. Even though the 

loading was not stopped insofar as wss possible, effects in many 

ways analagous to creep came into evidence. These effects Here 

not of sufficient magnitude to invalidate the conclusions stated 

in the previous paragraph. Clarification of the effect analagous 

to creep for continuous but varvir.g loading paths requires addl- 

tirnal study. 

— 
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TABLE I 

. Corner J?  
Cycle             de£/de£ o^E/deF" 

from   to   from   to fron to   from    to 

1 -31.4 -14.3 -.610 -.255 -25.6 -25.1 -0.485  -0.468 

2 -27.1 - 5*5    -.512 -.096 -25.9 -24.4 -0.485  -0.454 

3 -25.1 -15.2 -.469 -.272 -25.9 -24.8 -0.485  -0.463 

4 -28.1 -15.6 -.535 -.280 -25.9 -25.3 -0.485  -O.472 

5 -27.5 -17.2 -.521 -.310 -25.9 -24.8 -0.4*5  -0.460 

1 
i 
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